SVR ENGINEERING COLLEGE

(APPROVED BY ALLC.T.E., NEW DELHI-AFFILIATED TO J.N.T.U.
ANANTAPURANDACCREDITEDBYNBA)

AYYALURUMETTA(V),NANDYAL-518502NandyalDist.A.P.,
AcademicYear:2023-2024

Department Of CSE(Artificial Intelligence)

A community service project submitted to Jawaharlal Nehru Technological University
Anantapuram in partial fulfillment of requirements for the award of degree of

Lab Manual:
Applications Of AI Lab(R20)

Prepared
By
K. ALLURAIAH

(3 scanned with OKEN S

nnnnnn

(20A30601P) APPLICATIONS OF AI LAB

Course Objectives:

e To have an appreciation for and understanding of both the achievements of AI and the
theory underlying those achievements.

e To have an appreciation for the engineering issues underlying the design of Al systems

e To have a basic proficiency in a traditional Al language including an ability to write
simple to intermediate programs and an ability to understand code written in that
language.

e To understand the basic issues of knowledge representation and blind and heuristic
search, as well as an understanding of other topics such as minimax, resolution, etc. that
play an important role in Al programs.

Course Qutcomes:

e After completion of the course, students will be able to

e Develop systems that process unstructured, uncurated data automatically using artificial
intelligence (AI) frameworks and platforms.

e Determine the framework in which Al bots may function, including interactions with
users and environments.

e Design and implement cognitive automation for different industries

List of Experiments:

Design an application using machine learning algorithms that remember the edges of the
buildings that it has learned, which allows for better visuals on the map, and recognition
and understanding of house and building numbers. The application can also be taught to
understand and identify changes in traffic flow so that it can recommend the route that
avoids roadblocks and congestion.

1.Maps and Navigation

Al has drastically improved traveling. Instead of having to rely on printed maps or directions,
you can now use Google Maps on your phone and type in your destination. So how does the
application know where to go? And what’s more, the optimal route, road barriers, and traffic
congestions? Not too long ago, only satellite-based GPS was available, but now, artificial
intelligence is being incorporated to give users a much more enhanced experience.

2. Facial Detection and Recognition

A. Design an application that can be used for Face detection.
B. Design an application that can identify the face.

3. Text Editors or Autocorrect

A. Design an algorithm that can give autosuggestions in a word processor.
B. Design an algorithm to detect spelling and grammar errors 1n a text document.

4. Search and Recommendation Algorithms

Design a recommender system which keeps track of the previous shopping data of the user and
recommends other products based on his interests.

@ Scanned with OKEN Scanner

5. Chatbots

A. Design an Al chatbot which provides information about your college.
B. Design an Al chatbot which permits the user to install a software of your choice

6. Digital Assistants

Design a Digital assistant of your choice. Example 1s the digital assistant which plays a song
when you say play song xxx.mp3.

7. Social Media

A. Design an application which detects Fake news.
B. Design an application which finds most viewed news.

8. Image Processing
Design an application which detects the emotion of the person in an image.
References:

1. Gautam Shroff “The Intelligent Web”, OXFORD University Press, 2013.

2. Hod Lipson, and Melba kurman, “Driverless Intelligent cars and the Road Ahead™, The
MIT Press Cambridge, Massachusetts London, England, 2016.

3. Ernk R. Ranschaert, sergey Morozov, Paul R. Algra, “Artificial Intelligence in Medical
Imaging, Springer Nature Switzerland AG, 2019.

Online Learning Resources/Virtual Labs:

1. Al and Improving the Customer Experience| Pega

G Scanned with OKEN Scanner

Experiment
no:01

Date: Maps and Navigation

Aim: Al has drastically improved traveling. Instead of having to rely on printed maps or
directions, you can now use Google Maps on your phone and type in your destination. So how
does the application know where to go? And what’s more, the optimal route, road barriers, and
traffic congestions? Not too long ago, only satellite-based GPS was available, but now, artificial
intelligence 1s being incorporated to give users a much more enhanced experience.

DESCRIPTION:

1.Maps and Navigation:

Maps and Navigation refer to the technology used to locate and guide a person or a
vehicle from one place to another. With the help of Maps and Navigation, we can quickly get
directions to a specific location, avoid traffic congestion, and find nearby points of interest such
as restaurants, gas stations, and more.

2. Machine Learning Algorithms:

Machine Learning Algorithms are a subset of Artificial Intelligence that allows
computers to learn and improve without being explicitly programmed. These algorithms enable
applications to analyze data, identify patterns, and make predictions. In the context of Maps and
Navigation, machine learning algorithms can be used to analyze traffic patterns, identify
roadblocks, and suggest optimal routes based on real time data.
3.Computer Vision:

Computer Vision refers to the ability of a computer to interpret and understand visual
information from the world around it. In the context of Maps and Navigation, computer vision
can be used to recognize buildings, street signs, and other visual features of a city or town. This
information can then be used to create accurate maps and navigation directions.
4.Building Edges:

Building Edges refer to the outline or boundary of a building. By using computer vision
and machine learning algorithms, we can train an application to recognize the edges of buildings
and use this information to create more detailed and accurate maps. This can help improve
navigation and provide more relevant information about the area.

S.Traffic Flow:

Traffic Flow refers to the movement of vehicles on a road network. By using machine
learning algorithms, we can analyze traffic patterns and identify changes in flow. This
information can then be used to suggest alternate routes to avoid roadblocks and congestion. This
can help users save time and reach their destination more quickly.
6.House and Building Numbers:

House and Building Numbers refer to the numerical identifiers assigned to homes and
buildings in a city or town. By using computer vision, we can train an application to recognize
these numbers and use them to provide more accurate directions and information. This can help
users find specific buildings or homes more easily, especially in large or complex cities.

@ Scanned with OKEN Scanner

PROCEDURE:

1.Data Collection:

The first step in implementing this project is to collect data. We need to gather satellite images of
the city or town we want to map. This can be done using publicly available resources like
Google Maps or Open Street Map. We also need to collect traffic data, such as traffic flow,
speed, and road closures, which can be obtained from traffic sensors or publicly available traffic
data sources. Data cleaning and preparation: In order to use the data collected for the project, it
may be necessary to clean and preprocess the data. This can involve removing duplicates,
correcting errors, or transforming the data into a format that can be used by the machine learning
models

Feature engineering:

Feature engineering is the process of selecting and creating relevant features from the data that
can be used by the machine learning models. This may involve extracting features like building
edges, house numbers, or traffic flow patterns from the data, or creating new features based on
domain knowledge.

Model selection and tuning:

Depending on the specific requirements of the project, it may be necessary to experiment with
different machine learning models and algorithms to find the best model for the task at hand.
This may involve evaluating different model architectures, selecting appropriate
hyperparameters, or using techniques like cross-validation to optimize model performance.
2.Image Processing:

Once we have the data, we need to preprocess the satellite images. This involves removing noise,
enhancing contrast, and applying filters to improve the quality of the images. We can use image
processing techniques like convolutional neural networks (CNNs) to analyze the images and
extract features such as building edges and house and building numbers.

3.Building Edge Detection:

Next, we need to train a machine learning model to recognize building edges. This involves
using a CNN to analyze the satellite images and identify the boundaries of buildings. The model
can be trained on a large dataset of images that have been annotated with building edges. The
output of this step is a model that can recognize building edges in new images.

4.House and Building Number Recognition:

After building edge detection, we can train another machine learning model to recognize house
and building numbers. This involves using a CNN to analyze the satellite images and identify the
numerical identifiers assigned to homes and buildings. The model can be trained on a large
dataset of images that have been annotated with house and building numbers. The output of this
step 1s a model that can recognize house and building numbers in new images.

S.Traffic Flow Analysis:

To analyze traffic flow, we can use machine learning algorithms to identify patterns in the traffic
data. This involves using techniques like clustering and regression analysis to analyze the data
and 1dentify changes in flow. We can then use this information to suggest optimal routes to avoid
congestion and roadblocks.

6.Integration:

The final step is to integrate all of the components of the project into a single application. We
can create a user interface that allows users to input their destination and receive directions. The
application can use the building edge detection and house and building number recognition

@ Scanned with OKEN Scanner

models to provide more accurate directions. The application can also use the traffic flow analysis
to suggest alternate routes to avoid congestion and roadblocks. The output of this step is a
functional application that provides accurate maps and navigation directions.

Testing and evaluation:

Once the models have been trained, it 1s important to evaluate their performance on a separate
test set to ensure that they are generalizing well to new data. This may involve using metrics like
accuracy, precision, recall, or Fl-score to measure model performance.

Integration and deployment:

Once the machine learning models and user interface have been developed, it i1s important to
integrate them into a single application and test the application in a real-world setting. This may
involve deploying the application on a cloud platform, testing it with real users, or monitoring
the application to ensure that it is performing as expected.

IMPLEMENTATION

Step 1: Data collection and preprocessing Collect building map images with known building
edges Label the edges of the buildings in the images Convert the labeled images into a format
that can be used to train a machine learning model For this step, you can use any image dataset
of building maps that contain labeled edges. You can either create the dataset yourself or use an
existing dataset. Here's an example of how to load a dataset and preprocess the images:

Import os

import cv2

import numpy as np

Load the dataset

data_dir = 'path/to/dataset’

images = |]

labels = [|

for filename 1n os.listdir(data_dir):

if filename.endswith('.png’):

image = cv2.mread(os.path.join(data_dir, filename))

images.append(image)

Load the labeled image and extract the edge pixels

label = cv2.imread(os.path.join(data_dir, filename.replace('.png’, '_label.png')))
edge_pixels = np.where(np.all(label == [255, 0, 0], axis=-1))
labels.append(edge_pixels)

Convert the images and labels into numpy arrays

images = np.array(images)

labels = np.array(labels)

expected output:

There are 1000 training images and 200 validation images. Preprocessed map images with
normalized pixel values, resized dimensions, and labeled edges and house numbers.

@ Scanned with OKEN Scanner

Step 2: Model training Split the labeled images into training and validation sets Train a machine
learning model using the training set Evaluate the performance of the model using the validation
set For this step, you can use any deep learning framework of your choice, such as TensorFlow,

PyTorch, or Keras. Here's an example of how to train a simple convolutional neural network
(CNN) model using Keras:

import keras

from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense

Split the data into training and validation sets

from sklearn.model_selection import train_test_split

X_train, X_val, y_train, y_val = train_test_split(images, labels, test_size=(.2)

Define the CNN model

model = keras.Sequential(][

Conv2D(32, (3, 3), activation=relu’, input_shape=X_train[0].shape),

MaxPooling2D((2, 2)), Conv2D(64, (3, 3), activation=Telu’), MaxPooling2D((2, 2)),
Conv2D(128, (3, 3), activation=Trelu'), MaxPooling2D((2, 2)), Flatten(), Dense(128,
activation="relu'), Dense(2)])

Compile the model

model.compile(optimizer='adam’, loss=keras.losses.MeanSquaredError(), metrics=["accuracy')])

Train the model

history = model.fit(X_train, y_train, epochs=10, validation_data=(X_val, y_val))

expected output:
A trained machine learning model that can predict building edges and house numbers in new

map 1mages.

Epoch 1/10 79/79 [= —=] - 8s 96ms/step - loss: 0.6932 -
accuracy: 0.5059 - val_loss: 0.6908 - val_accuracy: 0.5300

Epoch 2/10 79/79 | = =] - 7s 91ms/step - loss: 0.6825 -
accuracy: 0.5715 - val_loss: 0.6944 - val_accuracy: 0.5000

Epoch 3/10 79/79 [= ==] - 7s 90ms/step - loss: 0.6632 -
accuracy: 0.6023 - val_loss: 0.7013 - val_accuracy: 0.5150

Epoch 4/10 79/79 | = ==] - 7s 90ms/step - loss: 0.6451 -
accuracy: 0.6288 - val_loss: 0.7028 - val_accuracy: 0.5050

Epoch 5/10 79/79 [= —=] - 7s 91ms/step - loss: 0.6264 -
accuracy: 0.6585 - val_loss: 0.7126 - val_accuracy: 0.5150

Epoch 6/10 79/79 | = ==] - 7s 92ms/step - loss: 0.6022 -
accuracy: 0.6867 - val_loss: 0.7293 - val_accuracy: 0.4950

Epoch 7/10 79/79 [= ==] - 7s 91ms/step - loss: 0.5810 -
accuracy: 0.7049 - val_loss: 0.7325 - val_accuracy: 0.5100

Epoch &/10 79/79 [= ==] - 7s 92ms/step - loss: 0.5586 -
accuracy: 0.7236 - val_loss: 0.7493 - val_accuracy: 0.5000

Epoch 9/10 79/79 [= = =] - 7s 91ms/step - loss: 0.5336 -

accuracy: 0.7468 - val_loss: 0.7779 - val_accuracy: 0.4800

@ Scanned with OKEN Scanner

Epoch 10/10 79/79 | —=====] - 7s 91ms/step - loss: 0.5125 -
accuracy: 0.7621 - val_loss: 0.7898 - val_accuracy: 0.4800
This output shows the training and validation accuracy and loss for each epoch of the model

training. It helps to assess whether the model is learning from the data and improving over time.

Step 3: Inference and visualization

Load a test map image

Preprocess the test image

Use the trained model to make predictions on the test image

Overlay the predicted edges on top of the original test image to visualize the results

For this step, you can use the OpenCV library to read and preprocess the test image, and then use
the trained model to make predictions on the image. Here's an example of how to do this:
Load test image

test_image = cv2.mread('test_map.png')

Preprocess image

processed_image = preprocess_image(test_image)

Make prediction

prediction = model.predict(processed_image)

Visualize prediction

overlay_image = visualize_prediction(test_image, prediction)

cv2.umshow('Building Edges’, overlay_image)

cv2.waitKey(0)

Step 4: House and Building Number Recognition To recognize and understand house and
building numbers, we can use optical character recognition (OCR) algorithms. OCR algorithms
can identify text within images, such as numbers on building facades. One popular OCR library
in Python 1s Tesseract. Here's an example code snippet for using Tesseract to recognize text in an
image:

import pytesseract

Load test image

test_image = cv2.imread('test_building.png')

Preprocess image
gray_image=cv2.cvtColor(test_image,cv2.COLOR_BGR2GRAY)
gray_image=cv2.medianBlur(gray_image,3)

Apply thresholding

gray_image = cv2.threshold(gray_image, 0, 255, c¢v2.THRESH_BINARY |
cv2.THRESH_OTSU)[1]

Apply dilation and erosion

kernel = np.ones((3,3), np.uintg)

gray_image = cv2.dilate(gray_image, kernel, iterations=1)
gray_image = cv2.erode(gray_image, kernel, iterations=1)

Recognize text using Tesseract

text = pytesseract.image_to_string(gray_image)

@ Scanned with OKEN Scanner

Print recognized text print(text)

expected output:

A fully functional web application that allows users to upload a map image, receives predictions
from the trained model, and displays the results on a map with recommendations for optimized
travel routes. This step generates an image file with the predicted edges overlaid on the original
map image. Here's an example of what that output might look like:

Step 5: Traffic Flow Analysis To identify changes in traffic flow and recommend optimal routes,
we can use data from various sources, such as GPS data from drivers and real-time traffic
updates. We can then use machine learning algorithms to analyze this data and make predictions
about traffic patterns. For example, we can use historical GPS data to train a machine learning
model to predict traffic patterns based on time of day, day of the week, and other factors. We can
then use this model to make real-time predictions about traffic flow and recommend optimal
routes to drivers. Here's an example code snippet for training a machine learning model to
predict traffic patterns based on historical GPS data:

import pandas as pd

from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_absolute_error

Load GPS data

data = pd.read_csv('gps_data.csv’)

Preprocess data

data['ttmestamp'] = pd.to_datetime(data['timestamp'])
data['day_of_week'] = data['timestamp'].dt.dayofweek

data['hour_of day'] = data['timestamp'].dt.hour

data = data.drop(['timestamp'], axis=1)

Split data into training and testing sets

X = data.drop(['traffic_flow'], axis=1)

y = data['traffic_flow']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

Train random forest regression model

model = RandomForestRegressor(n_estimators=100, random_ state=42)

model.fit(X_train, y_train)

Evaluate model on testing set

y_pred = model.predict(X_test)

mae = mean_absolute_error(y_test, y_pred)

print('Mean Absolute Error:', mae)

expected output:

The predicted building edges are: [[144, 118], [82, 274], [290, 274], [238, 118]] This output
represents the predicted edges of the buildings in the input image. In this example, there are 4
buildings, and the output shows the pixel coordinates of the top-left corner of each building.
These coordinates can be used to draw bounding boxes around the buildings in the original
image to highlight the predicted edges.

@ Scanned with OKEN Scanner

Experiment

no:02 Facial Detection and Recognition

Date:

A) Design an application that can be used for Face detection.
Aim: Design an application that can be used for Face detection.
Program:
import cv2
def detect_faces(image_path):

Load the pre-trained Haar Cascade classifier for face detection

face cascade=cv2.CascadeClassifier(cv2.data.haarcascades+'haarcascade frontalface defaul
t.xml")

Read the image
mmage = cv2.imread(image_path)
Convert the image to grayscale (required for face detection)
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
Detect faces in the grayscale image
faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5)
Draw bounding boxes around detected faces
for (x, y, w, h) in faces:
cv2.rectangle(image, (X, y), (X + w, y + h), (255, 0, 0), 2)
Save the output image with bounding boxes
output_path = "output_faces.jpg"
cv2.imwrite(output_path, image)
print(f"Detected {len(faces)} face(s). Output saved as {output_path}")

if name =" main ":

image_path = "PIC1.jpg" # Replace with your image file path

detect_faces(image_path)

G Scanned with OKEN Scanner

Output:

G Scanned with OKEN S

nnnnnn

B) Design an application that can identify the face
Aim: Design an application that can identify the face
Program:
import face_recognition
import cv2
Load an image with faces
image_path = "PIC1.jpg"
image = face_recognition.load_image_file(image_path)
Find all face locations in the image
face locations = face_recognition.face_locations(image)
print("Found { } face(s) in the image.".format(len(face_locations)))
Open the image using OpenCV for visualization
image_cv2 = cv2.imread(image_path)
Draw rectangles around the faces
for face location in face locations:
top, right, bottom, left = face_location
cv2.rectangle(image_cv2, (left, top), (right, bottom), (0, 255, 0), 2)
Display the image with faces marked
cv2.mshow("Face Recognition”, image_cv2)
cv2.waitKey(0)
cv2.destroyAllWindows()

Output:

B | Face Hecognition — | | b4

(3 scanned with OKEN Scanner

Experiment

no:03 Text Editors or Autocorrect

Date:

A. Design an algorithm that can give autosuggestions in a word processor.
Aim: Design an algorithm that can give autosuggestions in a word processor.
Program:

class TrieNode:

def 1nit__ (self):

self.children = {}
self.is end of word = False

class AutoSuggestion:

def it (self):

self.root = TrieNode()
self.corpus = set()
def insert_word(self, word):
node = self.root
for char in word:
if char not 1n node.children:
node.children|char]| = TrieNode()
node = node.children[char]
node.is end of word = True
def build_trie(self, corpus):
for word in corpus:
self.insert_ word(word)
def suggest_words(self, prefix):
node = self.root
for char in prefix:
if char not 1n node.children:
return [] # No suggestions for the given prefix

node = node.children|[char]

@ Scanned with OKEN Scanner

suggestions = []
self._dfs(node, prefix, suggestions)
return suggestions
def _dfs(self, node, current_word, suggestions):
if node.is end of word:
suggestions.append(current_word)
for char, child_node 1n node.children.items():
self._dfs(child_node, current_word + char, suggestions)
Example Usage:
auto_suggestion = AutoSuggestion()
corpus = ["apple”, "application”, "banana”, "bat", "batman”, "orange"]
auto_suggestion.build_trie(corpus)
user_input = "app”
suggestions = auto_suggestion.suggest_words(user_input)

print(suggestions)

OUTPUT:

= C\Windows\System 3 cmd.e = r

Microsoft Windows [Version 10.0.22631.3235]
(c) Microsoft Corporation. All rights reserved.

C:\Users\thota\OneDrive\Desktop\AAI LAB\text editor and spelling>python wordprocessor.py
['apple', 'application']

C:\Users\thota\OneDrive\Desktop\AAI LAB\text editor and spelling>

P an Qs .y L # - & [a] @ o u - E D_ ~ @ Ca !-::f' F =D |?--11-1;-i*-3r1' a

@ Scanned with OKEN Scanner

B. Design an algorithm to detect spelling and grammar errors in a text document
Aim: Design an algorithm to detect spelling and grammar errors in a text document
Program:

class SpellChecker:

def _ imit__(self, dictionary):

self.dictionary = set(dictionary)
def check_spelling(self, word):
return word.lower() not in self.dictionary
class GrammarChecker:
def check_subject_verb_agreement(self, sentence):
Implementation to check subject-verb agreement

pass

def check_verb_tense_consistency(self, sentence):
Implementation to check verb tense consistency
pass
class TextChecker:

def __init__(self, dictionary):

self.spell_checker = SpellChecker(dictionary)
self.grammar_checker = GrammarChecker()
def check text(self, text):
errors =[]
Tokenize the text
tokens = text.split()
Spell checking
for token 1n tokens:
if self.spell_checker.check_spelling(token):
errors.append(f"Spelling error: {token}")
Grammar checking

for sentence in text.split(’.'):

G Scanned with OKEN Scanner

if sentence.strip(): # Skip empty sentences
if self.grammar_checker.check_subject_verb_agreement(sentence):
errors.append(f"Grammar error: Subject-verb agreement issue in '{sentence}")
if self.grammar_checker.check_verb_tense_consistency(sentence):
errors.append(f"Grammar error: Verb tense consistency issue in '{sentence}')
return errors
Example Usage:

dictionary = { "apple”, "orange”, "banana”, "check", "grammar", "error" }

text_checker = TextChecker(dictionary)

text_to_check = "I like apples and bananas. Their are some grammar mistakes 1n this sentence.”
errors = text_checker.check text(text to_check)

print(errors)

OUTPUT:

= C4Windows\System 3 cmd.e ¥

Microsoft Windows [Version 10.0.22631.3235]
(c) Microsoft Corporation. All rights reserved.

C:\Users\thota\OneDrive\Desktop\AAI LAB\text editor and spelling>python detectspelling.py

['Spelling error: I', 'Spelling error: like',K 'Spelling error: apples',6 'Spelling error: and', 'Sp
elling error: bananas.', 'Spelling error: Their', 'Spelling error: are', 'Spelling error: some',6 '
Spelling error: mistakes',6K 'Spelling error: in', 'Spelling error: this', 'Spelling error: sentence

]

C:\Users\thota\OneDrive\Desktop\AAI LAB\text editor and spelling>

!

._,_' _:?:

17-03-2024

[Eme
b]
o
.
=&
%
<]

9 e s*»u fLCB e ma

@ Scanned with OKEN Scanner

Experiment
no:04

. Search and Recommendation Algorithms

AIM: Design a recommender system which keeps track of the previous shopping data of the user
and recommends other products based on his interests

Program:
import pandas as pd
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.preprocessing import MinMaxScaler
Sample shopping data (replace this with your actual dataset)
data = {'user_1d" [1, 1, 2, 2, 3, 3, 4, 4],
‘product_id": [101, 102, 101, 103, 102, 104, 101, 103],}
df = pd.DataFrame(data)
Create a user-product interaction matrix

user_product_matrix = df.pivot_table(index="user_id', columns="product_id', aggfunc=lambda x:
1, fill value=0)

Normalize the matrix to handle varying user activity levels
scaler = MinMaxScaler()

normalized_matrix = scaler.fit_transform(user_product_matrix)
Calculate cosine similarity between users

user_similarity = cosine_similarity(normalized_matrix)

Create a DataFrame for the similarity matrix

user_similarity_df=pd.DataFrame(user_similarity,index=user_product_matrix.index,
columns=user_product_matrix.index)

Function to get product recommendations for a given user
def get_recommendations(user_id, top_n=3):
similar_users = user_similarity_df[user_id].sort_values(ascending=False).index[1:]

user_products = set(user_product_matrix.loc[user_id, user_product_matrix.loc[user_id] ==
1].1ndex)

recommendations = []

for similar user in similar users:

G Scanned with OKEN Scanner

similar_user_products=set(user_product_matrix.loc[similar_user,
user_product_matrix.loc[similar_user]| == 1].index)

new_recommendations = similar_user_products - user_products
recommendations.extend(new_recommendations)
if len(recommendations) >= top_n:
break
return recommendations|:top_n]

Example: Get recommendations for user 1

user 1d to recommend = 1

recommendations = get_recommendations(user_id_to_recommend)

print(f"Recommended products for user {user_id_to_recommend}: {recommendations}")

OUTPUT:

= C\Windows\System 3 cmd.e = r

Microsoft Windows [Version 10.0.22631.3235]
{c) Microsoft Corporation. All rights reserved.

C:\Users\thota\OneDrive\Desktop\AAI LAB\Search and Recommendation Algorithms>python Search.py
C:\Users\thota\OneDrive\Desktop\AAI LAB\Search and Recommendation Algorithms\Search.py:1: DeprecationWarning:
Pyarrow will become a required dependency of pandas in the next major release of pandas (pandas 3.8),

(to allow more performant data types, such as the Arrow string type, and better interoperability with other libraries)
but was not found to be installed on your system.

If this would cause problems for you,

please provide us feedback at https://github.com/pandas-dev/pandas/issues/54466

import pandas as pd
Recommended products for user 1: [163, 164, 183]

C:\Users\thota\OneDrive\Desktop\AAI LAB\Search and Recommendation Algorithms>

@ Scanned with OKEN Scanner

Experiment

H0Z9 Chatbots

Date:

A. Design an Al chatbot which provides information about your college.
Aim: Design an Al chatbot which provides information about your college.
Program:

import random

greetings=["hello!","hithere!"," greetings!","welcome!"]

menu_options=|

"1.Programs offered”,

"2.Admission Process”,

"3. Tuition and Fees",

"4.Campus Facilities”,

"5.Contact Information",

"6.exit"]

programs_offered="\n We offer a wide range of programs including Computer
Science,Engineering, Businness Administration, and Psychology.”

admission_process="\n Our admission proces 1nvolves submitting an online
application,providing academic transcripts and letters of recommendation.Additionally, an
entrance exam and interview may be required for certain programs.”

tuition_fees="\n Tuition and fees vary depending on the program.It is best to visit our official
website or contact the admissions office for detailed information.”

campus_facilities="\n Our campus provides state-of-the-art facilities,including modern
classrooms,well-equipped laboratories, a library,sports facilities, and a student center."

contact_information="\n You can reach our admissions office
admissions @university.edu.\n"

def chatbot():
print(random.choice(greetings))
while True:
print("How can I assist you today?")
print_menu()

user_choice=get_user_choice()

G Scanned with OKEN Scanner

if user choice=="1";
print(programs_offered)

elif user choice=="2":
print(admission_process)

elif user choice=="3":
print(tuition_fees)

elif user choice=="4":
print(campus_facilities)

elif user choice=="5":
print(contact_information)

elif user choice=="6":

print("Thank you for wusing the college information

chatbot.Goodbye!")
break
glge!
print(“lam sorry,I didn't understand that.Please try again.”)
def print_menu():
print("Please select one of the following options:")
for option 1n menu_options:
print(option)
def get_user_choice():
choice=1nput("Enter your choice(1-6):")
return choice

chatbot()

@ Scanned with OKEN Scanner

OUTPUT:

CA\Windows\SyitemIDomde ¥ +

oft Corporation. ALL rights reser

s \Ethota\0 sktop\AAI LAB\chathbe hon Chatbots.py

ollowir options:
grams offered
sion Process
lon and

Facilita

programs including Computer Scienc i ring , Bus Administration,
ay?
4q11nn1ﬁg options:

'IIII'I'." jlil' g i i L] 'IIII. i"-l' ol R :: ion 1 "..|II!I; academi transc J'i_:J'.'u oL FNES 1I'1 Lers I.i'- :'I'I.I:I.'IIIII'Illlult'.:.liu Adait il.l-"-l.]].':.'_ an entrance &xam

interview

Facilities

Intormation

choic

@ Scanned with OKEN Scanner

B. Design an Al chatbot which permits the user to install a software of your choice
Aim: Design an Al chatbot which permits the user to install a software of your choice
Program:
import time
def greet_user():
print("Hello! I'm your friendly installation assistant. I'm here to help you install MyApp.")
def get_user_preferences():
print("Before we start, let me know your preferences.")
0s_choice = mnput("Enter your operating system (Windows, macOS, Linux): ")
install_type = input("Do you want a default installation? (yes/no): ")
return os_choice.lower(), install_type.lower()
def provide_information(os_choice):
print(f"Great! Let's get started with installing MyApp on {os_choice.capitalize() }.")
time.sleep(1) # Simulating delay for a more natural conversation
print("Please make sure your system meets the minimum requirements for MyApp.")
Add more information about system requirements, if needed.
def download_and_1nstall():
print("Now, let's download and install MyApp.")
time.sleep(1)
Add code to download the MyApp nstaller based on the user's operating system.
print("Downloading MyApp... (simulated)")
time.sleep(3) # Simulating download time
print("Installation 1n progress... (stmulated)”)
time.sleep(3) # Simulating installation time
print("MyApp has been successfully installed!")
def main():
greet_user()

os_choice, install_type = get_user_preferences()

G Scanned with OKEN Scanner

provide_information(os_choice)
if install_type == "yes":
Perform default installation
download and 1nstall()
elif install_type == "no":
Ask for custom configurations and perform custom installation

Add code for custom installation based on user preferences

pass

print("Installation complete. Enjoy using MyApp!")

if name. =—" mamn "
main()

OUTPUT:

= C4Windows\System 3 cmd.e ¥

Microsoft Windows [Version 10.0.22631.3235]
(c) Microsoft Corporation. All rights reserved.

C:\Users\thota\OneDrive\Desktop\AAI LAB\chatbot>python software.py

Hello! I'm your friendly installation assistant. I'm here to help you install MyApp.
Before we start, let me know your preferences.

Enter your operating system (Windows, macO0S, Linux): windows

Do you want a default installation? (yes/no): yes

Great! Let's get started with installing MyApp on Windows.

Please make sure your system meets the minimum requirements for MyApp.

Now, let's download and install MyApp.

Downloading MyApp... (simulated)

Installation in progress... (simulated)
MyApp has been successfully installed!
Installation complete. Enjoy using MyApp!

C:\Users\thota\OneDrive\Desktop\AAI LAB\chatbot>

£NG

-In_!..:. .= :l. : ‘-_,h L ? - ‘-' ‘H E:":I i u _ ~ i - .I.M.

T = M

17-03-2024

@ Scanned with OKEN Scanner

Experiment
no:06

Digital Assistants

Date:

Aim: Design a Digital assistant of your choice. Example is the digital assistant which plays a
song when you say play song xxx.mp3.

Program:
import pyttsx3
import speech_recognition as sr
import datetime
import wikipedia
import webbrowser
Import 0s
import random
Initialize text-to-speech engine
engine = pyttsx3.1nit()
Set voice properties (optional)
voices = engine.getProperty('voices’)
engine.setProperty('voice', voices[1].1d) # Female voice
Function to speak
def speak(audio):
engine.say(audio)
engine.runAndWait()
Function to greet user
def greet():
hour = int(datetime.datetime.now().hour)
if 0 <= hour < 12:
speak("Good Morning!")
eiif 12 <= hour < 18;
speak("Good Afternoon!")

else:

@ Scanned with OKEN Scanner

speak("Good Evening!")
speak("I am your digital assistant. How may I help you?")
Function to take command
def take _command():
recognizer = sr.Recognizer()
with sr.Microphone() as source:
print("Listening...")
recognizer.pause_threshold = 1
audio = recognizer.listen(source)
try:
print("Recognizing...")
query = recognizer.recognize_google(audio, language='en-in")
print(f"User said: {query}\n")
except Exception as e:
print(e)
print("Please say that again...")
return "None"
return query
if name ==" main
greet()
while True:
query = take_command().lower()
Logic for executing tasks based on query
if 'wikipedia' in query:
speak('Searching Wikipedia...")
query = query.replace("wikipedia®, "")
results = wikipedia.summary(query, sentences=2)
speak("According to Wikipedia")

speak(results)

@ Scanned with OKEN Scanner

elif 'open youtube' in query:
webbrowser.open(https://www.youtube.com")
speak("Opening YouTube")

elif 'open google' in query:
webbrowser.open("https://www.google.com")
speak("Opening Google")

elif ‘play music' in query:
music_dir = 'C:\\Music' # Path to your music directory
songs = os.listdir(music_dir)
random_song = random.choice(songs)
os.startfile(os.path.join(music_dir, random_song))
speak(f"Playing {random_song}")

elif 'the time' in query:
strT1ime = datetime.datettme.now().strittme("% H:%M:%S")
speak(f"The time is {strTime}")

elif 'exit’' in query:
speak("Goodbye!")
break

else:

speak("I'm sorry, I don't understand that command. Please try again.")

OUTPUT:

g 3 « 2 PespecBa®PPinm c@ s W ene LN 0

@ Scanned with OKEN Scanner

Experiment

DO Social Media

Date:

Aim: Design an application which detects Fake news

Program:

import numpy as np

import pandas as pd

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split

from sklearn.linear_model import PassiveAggressiveClassifier
from sklearn.metrics import accuracy_score

Load the dataset (replace this with your own dataset)

data = pd.read_csv('news_dataset.csv")

Separate features (X) and labels (y)

X = data] 'text']

y = data['label’]

Initialize a Thidf Vectorizer

thidf_vectorizer = Tfidf Vectorizer(stop_words='english', max_df=0.7)
Fit and transform the training data

X _thidf = tfidf vectorizer.fit_transform(X)

Split the dataset 1nto training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X_tfidf, y, test_size=0.2, random_state=42)

Initialize a PassiveAggressiveClassifier

classifier = PassiveAggressiveClassifier(max_iter=50)
Train the classifier

classifier.fit(X_train, y_train)

Predict the test set results

y_pred = classifier.predict(X_test)

Calculate the accuracy

accuracy = accuracy_score(y_test, y_pred)

G Scanned with OKEN Scanner

print(f"Accuracy: {accuracy:.2f}")
Example of predicting fake news
def predict_fake news(news_text):
news_tfidf = tfidf vectorizer.transform([news_text])
prediction = classifier.predict(news_tfidf)
if prediction[0] == 'FAKE"
return "This news 1s fake."
else:
return "This news 1s real.”
Example usage
news_text = "Scientists have discovered a new planet beyond our solar system."
print(predict_fake news(news_text))

OUTPUT:

= CiWindows\System 3Zwemd.e = F

Microsoft Windows [Version 10.6.22631.3296]
(c) Microsoft Corporation. All rights reserved.

C:\Users\thota\OneDrive\Desktop\AAI LAB\Social Media\New folder>python ff.py
C:\Users\thota\OneDrive\Desktop\AAI LAB\Social Media\New folder\ff.py:2: DeprecationWarning:
Pyarrow will become a required dependency of pandas in the next major release of pandas (pandas 3.0),
(to allow more performant data types, such as the Arrow string type, and better interoperability with other 11
braries)
but was not found to be installed on your system.
If this would cause problems for you,
please provide us feedback at https://github.com/pandas-dev/pandas/issues/54466

impﬂlt pandas as pd

:\Users\thota\OneDrive\Desktop\AAI LAB\Social HﬂdiaRpr folder\ff. py:ﬁ: DtypeWarning: Columns (4,5,6,7,8,9,10
,11 12,13,14,15,16, 1? ,18,19,20,21,22,23,24, 5 26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42, 43,44 U5, u6,4
7,48 uq EU 51 2 5‘ E Rﬁ ET .58 59 68,6 1 ,Egrnurbﬁrbb,ﬁT,ﬁx,b?ITUJTl,Tj,TJ,TurTFr?h,?T,?u,?g,Eﬂ,E ,GE,S?,
BH,&E 6 QT ”“ :Q,HUIQI,Q‘,QK,QH,QEJﬂE 97 ,99,1@9,1&1,1@2,1&3,1&& 185,1686,107,168,169,116,111,112,113,114,11
5,11bJ117,11a,119,1?B|121,1??,123,13411J%,I?E,1?7,123r129,13ﬂ,131,14.1133 1au 115 lﬁh 13? 115 149 1uﬂ 141 14:,
143,144 145,146,147, 148 149,150,151,152,153,154,155,156,157,158,159,168,161 le lb:,an,1bu,166,16711ﬁ_,lb9,1T
@,171) have mixed types. _pPLlfv dtvpL nptlnn on 1mp01t or 'Pt lﬂw mumulv:FalAL

data = pd.read_csv('Fake.csv')
The text is with a probability of (probability:.2f)

ci
2

-
=

C:\Users\thota\OneDrive\Desktop\AAI LAB\Social Media\New folder=>

@ Scanned with OKEN Scanner

Experiment
no:08

Date: Image Processing

Aim: Design an application which detects the emotion of the person in an image.

Program:

Import the necessary libraries

import cv2

import numpy as np

import matplotlib.pyplot as plt

Load the image

image = cv2.imread('Ganeshji.webp’)

Convert BGR 1mage to RGB

immage_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

Define the scale factor

Increase the size by 3 times

scale factor 1 =3.0

Decrease the size by 3 times

scale factor 2 =1/3.0

Get the original image dimensions

height, width = 1image_rgb.shape|:2]

Calculate the new 1image dimensions

new_height = int(height * scale_factor_1)

new width = int(width * scale factor 1)

Resize the image

zoomed_1image = cv2.resize(src —image_rgb,
dsize=(new_width, new_height),
interpolation=cv2.INTER_CUBIC)

Calculate the new 1image dimensions

new_heightl = int(height * scale_factor_2)

new widthl = int(width * scale factor 2)

@ Scanned with OKEN Scanner

Scaled 1image
scaled_image = cv2.resize(src= 1mage_rgb,
dsize =(new_width1, new_heightl),
interpolation=cv2.INTER_AREA)

Create subplots
fig, axs = plt.subplots(1, 3, figsize=(10, 4))
Plot the original image
axs[0].i.mshow(image_rgb)
axs[0].set_title('Original Image Shape:'+str(image_rgb.shape))
Plot the Zoomed Image
axs[1].imshow(zoomed_image)
axs[1].set_title("Zoomed Image Shape:+str(zoomed_1mage.shape))
Plot the Scaled Image
axs[2].imshow(scaled_image)
axs[2].set_title('Scaled Image Shape:'+str(scaled_image.shape))
Remove ticks from the subplots
for ax 1n axs:

ax.set_xticks([])

ax.set_yticks([])
Display the subplots
plt.tight_layout()

plt.show()

@ Scanned with OKEN Scanner

INPUT:

OUTPUT:

= CYWindows\System 3Zwemd.e = f W

ws [Version 18.8.23631.3296]

rosoft Corporation. ALL rights res

‘Wsershthota\OneDrive\Desktop\AAL LAB\image

1 '-'_T'" 9 (] W

Original Image Shape:(560, 500, 3) Zoomed Image Shape:(1680, 1500, 3) Scaled Image Shape: (186, 166, 3)

x=72 6 y=B5. T
[200, 158, 100]

E‘:. ~ 0

. 12:45 -
N T o BOSR

J‘w: .= Q g HLPL—-i-@E?E'!'@

@ Scanned with OKEN Scanner

